Chapter 11: Survival Analysis and Censored Data

+ Samples are followed until an event (death) happens or until the
sample is censored.

+ An event may be censored by removing it from the study or if the
study terminated before the event happens.

+» The survival time, T, is the time to the event while C is the time to
a censoring event.

+~ For each individual we then have the random variable, Y=min(T,C).



Censored data

+» In addition, we have an
indicator random “
variable associated with

Patient

the times, T and C, N
5 — {1 ifT<C

0if T>C T

+ In this figure y,=t,, ['] ﬂ'm 2{']0 3{;0
Y2=Cy, ¥3=t3 and y,=c,

X3 81=63=1 and 62=84=O

Time in Days



The Kaplan-Meter Survival Curve

+» The survival function is the probability of surviving past a specific
time, S(t)=Pr(7T>t).
+ We can’t simply count up all the individuals that survived longer

than t and divide by the total, since some individuals will have
been censored before t.

+ If we simply ignore all the individuals who were censored before ¢,
then we are throwing out useful information.



The Kaplan-Meter Survival Curve

« Letd; <d, <--<dgbe the K unique times of death among the
uncensored individuals.

+ Let g, be the total number of deaths at time d,.

+~ Finally, let r, be the total number alive just before time d,. These
“at risk” individuals can include individuals who will ultimately be
censored.

s« Pr(T >d;) =Pr(T >di|T >dy_1) Pr(T >d,_q) +
Pr(T > d;|T < dy_,) Pr(T < d,_,) [condition on all possible values of T]

« But Pr(T > d,|T < d;_;) must be 0 since d;_; < d;

+ S(dy) =Pr(T > dy) =Pr(T >di|T > dy_1) Pr(T >dj_) =
Pr(T > d;|T > ds_1) S(dy_,) [continue by substituting for S(d,_,) and
SO on|



The Kaplan-Meter Survival Curve

+» To estimate the conditional survival probability, we calculate the
number of survivors among the at risk group, r; — g;, and the divide

by the number of individuals at risk r;

Pr(T > d;|T > d

j-1) =

» Plugging this into the full equation,

S(dk) = 11j= 1(

rji—4j

Tj

)

Estimated Probability of Survival

(r — qJ)
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Log-Rank Test

+ If we need to compare two survival curves to each other the log-
rank test overcomes the difficulties of censored data. It will be a
test over the entire length of the survival curve.

+ The previous parameters are expanded to include subscripts “1” for
group 1 and “2” for group 2.

% _ _ . _ X-EX)
« The null hypothesis will have the general construction, W = varGo

» For this problem X = YX_, q1x

Group 1 |Group 2 Total
Dled 1k Qo Dk
Survived |7y, -Gy |Fop -Gy Y "9k
Total Y1 Yok Yk




Log-Rank Test

+ Under the null hypothesis, E(q{;) = %qu SiNCe gy = gox = Qi

+ Short aside: see problem 7. Consider an urn with r, balls g,/r, are
white. If we sample without replacement r;, balls the probability of
getting g, white balls in the sample follows a hypergeometric
distribution which has a mean, ry,(q,/r,) and variance,

Ik 1k (1 — QR) (rk_rik) = "k z_: (1 — 1 /1) (e — qi) = Var(qix)

Tk Tk Tk—
+ Although various g, may be correlated the log-rank test uses the
approximation, Var(Xx_1 qix) = Yx_1 Var(q.y)

+~ If the sample is large p-values can be derived assuming W has a
normal distribution, otherwise a permutation test can used by
randomly switching the labels "1” and “2".




Hazard Function

+ Can we develop a regression equation that can be used to predict
the true survival time from the censored and uncensored survival

data?
+ The hazard function is set up to predict the probability of the event

. . . Pr(t<T<t+At|T>t
T in @ small interval, h(t) = lim at 7>t)
At—0 At

+ As At - 0, h(t) is no longer a probability but is a conditional
probability density function.




Hazard Function

+~ Recall that Pr(A|B)= Pr(A and B)/Pr(B)

+ h(t) = lim Pr(t<T<t+At and (T>t))/At — lim Pr(¢<Tst+At)/At _ f(1)
At—0 Pr(T>t) At—0 Pr(T>t) S(t)
+» The function f(t) is a probability density function or the

instantaneous rate of death.

+ We can use f(t) and S(t) to estimate likelihood, L;, of sample
observations.

f(y;)if the ith observation of not censored

« Thus, L; = { S(y;) if the ith observation is censored

+ By above, L; = f(y)%S(y; )*~%, for the entire sample, i=1,...,n the
likelihood is L =T, f ()% S (y; )'7% = [Ti=; RS ()



Hazard Function

+ What function might be used for f(x)? It could be the exponential
function, rexp(-At), or we could use covariates directly with the

hazard function, h(t|x;) = exp(ﬁo + Z?ﬂﬁjxij).

+« A popular function used to model aging in many organisms
including humans is the Gompertz equation.

+» The instantaneous mortality rate is, u(t) = _71%[ = Aexp(at) (*)

+» To derive how many survivors there will be at some future time, T,
we can do the following to equation (*) above

Nt dN T ,
f Tz —fo Aexp(at)dt - log(N) |%§ — —EeXp(at) |g

o Ny A(l — exp(aT)))

A
log <—> = —|[1 —exp(aT)] » Ny = Nyexp <
Ny a

= NyProb(surviving to T)

a



Gompertz Equation

«» The distribution function of a random

variable, F(T), is the Prob(t<T). For the
Gompertz model that is 1 —

exp (A(l—exp(aT)))

a
+» Fact: The distribution function is
related to the probability density

function, f(t), by =2 = £(1).

+» Take some derlvatlves and do some
algebra to get the density function for

the Gompertz, dexp {A(l_eXp(at)) + at}

a

» Female data on the right from Mueller
et al., 1995, small sample size ~50
individuals per sex.
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Gompertz Estimation

+» Suppose we want to estimate A and o of the Gompertz from
mortality that is observed over fixed time intervals, ¢, t,,...,t,.
Suppose there are N,; individuals alive at time ¢; and d,; deaths
between then and time ¢t;,;. The empirical estimate of mortality is
then, dy/ Ny.

% This Ieads to the naive estimate of instantaneous mortality as,

,u(t ) = ; = Aexp(at;)

d
. But the correct answer is — = ftf“f(t)dt Another way to express
t

value of the integral is, F(t +1) F(t;).

+» The naive estimate produces biased estimates which get larger as
the time interval gets larger. See Mueller et al., 1995. Exp. Geron.
30: 553-569.



Simulate Gompertz random variables

+ With the Gompertz distribution function you can generate ages-at-
death that follow the Gompertz equation using the inverse
transform method.

A(1—exp(aT))

a

« F(T)=U=1- exp( ) Now solve this equation for T.

_aln(1-U)]
A
a

ln[l

+» After some algebra you get T =

+ Use a uniform (on (0,1)) random number generator to get U and
then solve.



Proportional Hazards

+ The likelihood function could be used to estimate the § parameters
of covariates but would require a functional form for f(t).

+» Proportional hazards are more flexible.

+~ The model used is: h(t|x;) = ho(t)exp( ?zlxijﬂj), where hy(t) is the
baseline hazard function which would apply if all x;'s were 0.

+ The function exp( }’zlxijﬁj) is referred to as the relative risk since it
reflects the changes to the hazard risk when the x;'s are not 0.



Proportional Hazards

+ The only assumption that is
implicit in the proportional
hazards model is that a one

unit increase in Xj; results in an

increase in h(t|x;) by a factor
exp(B;)-
+« For the binary feature used in

this figure the top two curves
satisfy the proportional
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haza rds mOdel but the bOttom FIGURE 11.4. Top: In a simple example with p = 1 and a binary covariate

two do not.

x; € {0,1}, the log hazard and the survival function under the model (11.14)
are shown (green for x; = 0 and black for z; = 1). Because of the proportional
hazards assumption (11.14), the log hazard functions differ by a constant, and the
survival functions do not cross. Bottom: Again we have a single binary covariate
x; € {0,1}. However, the proportional hazards assumption (11.14) does not hold.
The log hazard functions cross, as do the survival functions.



Cox’s Proportional Hazards Model

How do we estimate covariate parameters, B, without specifying a form for hy(t)?

» Assume there are no ties for failure times, and that y; is not censored but y; is it’s
failure time. Then the hazard function for the jth observation is, h(y;|x;) =

ho(yl-)exp( b xl-jﬁj) and the total hazard for the at risk observations is,

vy, ho(yl)exp( i1 X! ],B]) Here the sum over /’ includes individuals which may

or may not be censored in the future.
- The probability that the ith observation will fail rather then any of the other at
notvexp(S_, xijB;) exp(Zh_, xiBy)
hoyexp(Eh_, xyB;) Ty, exp(Th_, x;1B;)

i zy; Ly 2y

+» The baseline function has cancelled out.
» The last ratio is called the partial likelihood and can be used to numerically

estimate the model parameters, derive p-values and confidence intervals on
parameter estimates.

risk individuals is,
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