Chapter 11: Survival Analysis and Censored Data

- Samples are followed until an event (death) happens or until the sample is censored.
- An event may be censored by removing it from the study or if the study terminated before the event happens.
- ❖ The survival time, T, is the time to the event while C is the time to a censoring event.
- * For each individual we then have the random variable, $Y=\min(T,C)$.

Censored data

In addition, we have an indicator random variable associated with the times, T and C,

$$\delta = \begin{cases} 1 & \text{if } T \le C \\ 0 & \text{if } T > C \end{cases}$$

- * In this figure $y_1=t_1$, $y_2=c_2$, $y_3=t_3$ and $y_4=c_4$
- $\delta_1 = \delta_3 = 1$ and $\delta_2 = \delta_4 = 0$

The Kaplan-Meier Survival Curve

- * The survival function is the probability of surviving past a specific time, $S(t)=\Pr(T>t)$.
- We can't simply count up all the individuals that survived longer than t and divide by the total, since some individuals will have been censored before t.
- If we simply ignore all the individuals who were censored before t, then we are throwing out useful information.

The Kaplan-Meier Survival Curve

- * Let $d_1 < d_2 < \cdots < d_K$ be the K unique times of death among the uncensored individuals.
- * Let q_k be the total number of deaths at time d_k .
- * Finally, let r_k be the total number alive just before time d_k . These "at risk" individuals can include individuals who will ultimately be censored.
- * $\Pr(T > d_k) = \Pr(T > d_k | T > d_{k-1}) \Pr(T > d_{k-1}) + \Pr(T > d_k | T \le d_{k-1}) \Pr(T \le d_{k-1})$ [condition on all possible values of T]
- * But $Pr(T > d_k | T \le d_{k-1})$ must be 0 since $d_{k-1} < d_k$
- * $S(d_k) = Pr(T > d_k) = Pr(T > d_k | T > d_{k-1}) Pr(T > d_{k-1}) = Pr(T > d_k | T > d_{k-1}) S(d_{k-1})$ [continue by substituting for $S(d_{k-1})$ and so on]

The Kaplan-Meier Survival Curve

* To estimate the conditional survival probability, we calculate the number of survivors among the at risk group, $r_j - q_j$, and the divide by the number of individuals at risk r_j ,

$$\widehat{Pr}(T > d_j | T > d_{j-1}) = \frac{(r_j - q_j)}{r_j}$$

Plugging this into the full equation,

$$\hat{S}(d_k) = \prod_{j=1}^k \left(\frac{r_j - q_j}{r_j}\right)$$

Log-Rank Test

- If we need to compare two survival curves to each other the logrank test overcomes the difficulties of censored data. It will be a test over the entire length of the survival curve.
- The previous parameters are expanded to include subscripts "1" for group 1 and "2" for group 2.
- * The null hypothesis will have the general construction, $W = \frac{X E(X)}{\sqrt{Var(X)}}$
- For this problem $X = \sum_{k=1}^{K} q_{1k}$

	Group 1	Group 2	Total
Died	$ q_{1k} $	$ q_{2k} $	$ q_k $
Survived	r_{1k} - q_{1k}	r_{2k} - q_{2k}	$r_k - q_k$
Total	$ r_{1k} $	$ r_{2k} $	$ r_k $

Log-Rank Test

- Under the null hypothesis, $E(q_{1k}) = \frac{r_{1k}}{r_k} q_k$ since $q_{1k} = q_{2k} = q_k$
- Short aside: see problem 7. Consider an urn with r_k balls q_k/r_k are white. If we sample without replacement r_{1k} balls the probability of getting q_{1k} white balls in the sample follows a hypergeometric distribution which has a mean, $r_{1k}(q_k/r_k)$ and variance,

$$r_{1k} \frac{q_k}{r_k} \left(1 - \frac{q_k}{r_k} \right) \left(\frac{r_k - r_{1k}}{r_k - 1} \right) = r_{1k} \frac{q_k}{r_k} (1 - r_{1k}/r_k) (r_k - q_k) = Var(q_{1k})$$

- * Although various q_{ik} may be correlated the log-rank test uses the approximation, $Var\left(\sum_{k=1}^{K}q_{1k}\right)\approx\sum_{k=1}^{K}Var(q_{1k})$
- ❖ If the sample is large p-values can be derived assuming W has a normal distribution, otherwise a permutation test can used by randomly switching the labels "1" and "2".

Hazard Function

- Can we develop a regression equation that can be used to predict the true survival time from the censored and uncensored survival data?
- * The hazard function is set up to predict the probability of the event T in a small interval, $h(t) = \lim_{\Delta t \to 0} \frac{\Pr(t < T \le t + \Delta t \mid T > t)}{\Delta t}$
- * As $\Delta t \to 0$, h(t) is no longer a probability but is a conditional probability density function.

Hazard Function

- * Recall that Pr(A|B) = Pr(A and B)/Pr(B)
- $h(t) = \lim_{\Delta t \to 0} \frac{\Pr(t < T \le t + \Delta t \text{ and } (T > t))/\Delta t}{\Pr(T > t)} = \lim_{\Delta t \to 0} \frac{\Pr(t < T \le t + \Delta t)/\Delta t}{\Pr(T > t)} = \frac{f(t)}{S(t)}$
- \bullet The function f(t) is a probability density function or the instantaneous rate of death.
- * We can use f(t) and S(t) to estimate likelihood, L_i , of sample observations.
- * Thus, $L_i = \begin{cases} f(y_i)if & \text{the ith observation of not censored} \\ S(y_i) & \text{if the ith observation is censored} \end{cases}$
- * By above, $L_i = f(y_i)^{\delta_i} S(y_i)^{1-\delta_i}$, for the entire sample, i=1,...,n the likelihood is $L = \prod_{i=1}^n f(y_i)^{\delta_i} S(y_i)^{1-\delta_i} = \prod_{i=1}^n h(y_i)^{\delta_i} S(y_i)$

Hazard Function

- * What function might be used for f(x)? It could be the exponential function, $\lambda \exp(-\lambda t)$, or we could use covariates directly with the hazard function, $h(t|x_i) = exp(\beta_0 + \sum_{j=1}^p \beta_j x_{ij})$.
- A popular function used to model aging in many organisms including humans is the Gompertz equation.
- The instantaneous mortality rate is, $\mu(t) = \frac{-1}{N} \frac{dN}{dt} = Aexp(\alpha t)$ (*)
- To derive how many survivors there will be at some future time, T, we can do the following to equation (*) above

$$\int_{N_0}^{N_T} \frac{dN}{N} = -\int_0^T A \exp(\alpha t) dt \to \log(N) \Big|_{N_0}^{N_T} = -\frac{A}{\alpha} \exp(\alpha t) \Big|_0^T$$

$$\log\left(\frac{N_T}{N_0}\right) = \frac{A}{\alpha} [1 - \exp(\alpha T)] \to N_T = N_0 \exp\left(\frac{A(1 - \exp(\alpha T))}{\alpha}\right)$$

$$= N_0 Prob(surviving to T)$$

Gompertz Equation

- * The distribution function of a random variable, F(T), is the Prob(t < T). For the Gompertz model that is $1 exp\left(\frac{A(1-exp(\alpha T))}{\alpha}\right)$
- * Fact: The distribution function is related to the probability density function, f(t), by $\frac{\partial F(t)}{\partial t} = f(t)$.
- * Take some derivatives and do some algebra to get the density function for the Gompertz, $Aexp\left\{\frac{A(1-exp(\alpha t))}{\alpha} + \alpha t\right\}$
- ❖ Female data on the right from Mueller et al., 1995, small sample size ~50 individuals per sex.

Gompertz Estimation

- * Suppose we want to estimate A and α of the Gompertz from mortality that is observed over fixed time intervals, t_1 , t_2 ,..., t_d . Suppose there are N_{tj} individuals alive at time t_j and d_{tj} deaths between then and time t_{j+1} . The empirical estimate of mortality is then, d_{tj}/N_{tj} .
- * This leads to the naïve estimate of instantaneous mortality as, $\mu(t_j) = \frac{d_{t_j}}{N_{t_j}} = Aexp(\alpha t_j)$
- * But the correct answer is $\frac{d_{t_j}}{N_{t_j}} = \int_{t_j}^{t_{j+1}} f(t) dt$. Another way to express value of the integral is, $F(t_{j+1}) F(t_j)$.
- The naïve estimate produces biased estimates which get larger as the time interval gets larger. See Mueller et al., 1995. Exp. Geron. 30: 553-569.

Simulate Gompertz random variables

- With the Gompertz distribution function you can generate ages-atdeath that follow the Gompertz equation using the inverse transform method.
- * $F(T) = U = 1 exp\left(\frac{A(1 exp(\alpha T))}{\alpha}\right)$ Now solve this equation for T.
- After some algebra you get $T = \frac{ln\left[1 \frac{\alpha ln(1 U)}{A}\right]}{\alpha}$
- Use a uniform (on (0,1)) random number generator to get U and then solve.

Proportional Hazards

- * The likelihood function could be used to estimate the β parameters of covariates but would require a functional form for f(t).
- Proportional hazards are more flexible.
- * The model used is: $h(t|x_i) = h_0(t)exp\left(\sum_{j=1}^p x_{ij}\beta_j\right)$, where $h_0(t)$ is the baseline hazard function which would apply if all x_i 's were 0.
- * The function $exp\left(\sum_{j=1}^{p}x_{ij}\beta_{j}\right)$ is referred to as the relative risk since it reflects the changes to the hazard risk when the x_{i} 's are not 0.

Proportional Hazards

- * The only assumption that is implicit in the proportional hazards model is that a one unit increase in x_{ij} results in an increase in $h(t|x_i)$ by a factor $\exp(\beta_i)$.
- * For the binary feature used in this figure the top two curves satisfy the proportional hazards model but the bottom FIGURE 11.4. Top: In a simple example with p=1 and a binary covariate two do not.

 * For the binary feature used in this figure the top two curves $0.5 \times 1.0 \times 1.5 \times 2.0 \times 1.0 \times 1$

FIGURE 11.4. Top: In a simple example with p = 1 and a binary covariate $x_i \in \{0,1\}$, the log hazard and the survival function under the model (11.14) are shown (green for $x_i = 0$ and black for $x_i = 1$). Because of the proportional hazards assumption (11.14), the log hazard functions differ by a constant, and the survival functions do not cross. Bottom: Again we have a single binary covariate $x_i \in \{0,1\}$. However, the proportional hazards assumption (11.14) does not hold. The log hazard functions cross, as do the survival functions.

Cox's Proportional Hazards Model

- * How do we estimate covariate parameters, β , without specifying a form for $h_0(t)$?
- * Assume there are no ties for failure times, and that y_i is not censored but y_i is it's failure time. Then the hazard function for the *ith* observation is, $h(y_i|x_i) = h_0(y_i)exp\Big(\sum_{j=1}^p x_{ij}\beta_j\Big)$, and the total hazard for the at risk observations is, $\sum_{i':y_{i'}\geq y_i}h_0(y_i)exp\Big(\sum_{j=1}^p x_{i'j}\beta_j\Big)$. Here the sum over i' includes individuals which may or may not be censored in the future.
- * The probability that the *ith* observation will fail rather then any of the other at risk individuals is, $\frac{h_0(y_i)exp\left(\sum_{j=1}^p x_{ij}\beta_j\right)}{\sum_{i':y_{i'} \geq y_i} h_0(y_i)exp\left(\sum_{j=1}^p x_{i'j}\beta_j\right)} = \frac{exp\left(\sum_{j=1}^p x_{ij}\beta_j\right)}{\sum_{i':y_{i'} \geq y_i} exp\left(\sum_{j=1}^p x_{i'j}\beta_j\right)}$
- The baseline function has cancelled out.
- The last ratio is called the partial likelihood and can be used to numerically estimate the model parameters, derive p-values and confidence intervals on parameter estimates.